If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=8t+19.6t^2
We move all terms to the left:
0-(8t+19.6t^2)=0
We add all the numbers together, and all the variables
-(8t+19.6t^2)=0
We get rid of parentheses
-19.6t^2-8t=0
a = -19.6; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-19.6)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-19.6}=\frac{0}{-39.2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-19.6}=\frac{16}{-39.2} =-16/39.2 $
| p−21=−1 | | x/5-11=-9 | | 45+x/2=180 | | 2.21=1.7d | | x/73=0 | | (x+7)*(x+2)=84 | | 13d-9d=12 | | 5p+3=11 | | 19-2a=13 | | .5(x+20)=7x+30 | | 12x^2-24x-8=0 | | x/(-5)=-21 | | -0.5n=-0.73 | | -2(a+8)=-28 | | 1.7=2.2b-6.1 | | 3x-2(6x+5)+2=0 | | x2−11=110 | | -4.1=3.4+w/3 | | (7x-2)^2=4(7x-2) | | h=-16(4)^2=160(4)+160 | | 5s+33=173 | | 3y+y+3y+y=40 | | 5w^2=-w | | 6s+36=192 | | k/5-9=-7 | | 4y-5=7-2y+5 | | 10n^2+9n+2=0 | | 3-4x-3x=30 | | 1=4/7(5)+b | | 7(y-5)=4y-44 | | 6.25÷2.5+x×0.5=13.45 | | 1/5v-8=10 |